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Sleep is essential for the regulation of neural dynamics and

animal behavior. In particular, sleep is crucial for memory

consolidation and emotional regulation. In turn, emotions are

key to the modulation of learning processes, in which sleep also

plays a crucial role. Emotional processing triggers coordinated

activity between neuronal populations embedded in a network

including the hippocampus, amygdala and prefrontal cortex.

The optogenetic modulation of these distributed engrams’

activity interferes with emotional memory. During non-REM

sleep, cross-structure coordinated replay may underpin the

consolidation of brain-wide emotional associative engrams.

Fear conditioning induces neural synchronization among the

amygdala, hippocampus, and medial prefrontal cortex during

subsequent REM sleep, the perturbation of which interferes

with fear memory consolidation. Future work may focus on the

differential mechanisms during REM versus non-REM sleep

that underpin emotional regulation and memory consolidation,

as well as on distinguishing between these two tightly linked

cognitive processes.
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Introduction
Sleep is a ubiquitous phenomenon throughout the animal

kingdom and is vital for the brain to function properly.

Indeed, a lack of sleep leads to a constellation of cognitive

and behavioral alterations [1], and at least two cognitive

processes have been critically linked to sleep. The first
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one is memory consolidation [2], that is, the gradual

strengthening of memories over time. The second is

emotional regulation, allowing for the maintenance of

an appropriate level of reactivity to emotional situations

(let he who has never experienced irritability or even

outbursts of rage/tears when sleep-deprived cast the first

pillow). The intensity and vividness of emotions during

dreams have also always been a subject of great fascina-

tion in art (Figure 1) and conversation in everyday life,

driving early studies on the link among dreams, sleep, and

emotions in neuroscience.

Emotions can strengthen memories: we remember events

that carried strong positive or negative emotional weight

better and more vividly. Sometimes we even re-experience

these emotions when exposed to reminders of the event,

such as the context. For instance, you will feel fear when

walking down a street where you were bitten by a dog, a

phenomenon similar to Pavlovian conditioning. These

associative memories, although critical to avoid danger

and promoting survival, can become maladaptive in

patients suffering from trauma and stressor-related disor-

ders such as post-traumatic stress disorder (PTSD), a

mental condition associated with sleep disturbances and

severe nightmares [3]. In short, sleep seems to be pivotal in

‘emotional processing’, an umbrella term used to encapsu-

late i) emotional associative memory consolidation, ii) the

modulation of episodic memory by emotions and iii) emo-

tional regulation [4].

Sleep itself is composed of several different stages asso-

ciated with distinct physiological features occurring in

cycles throughout the night. Although it is an oversimpli-

fication, a main distinction can be made between rapid

eye movement (REM) sleep and non-REM sleep. REM

sleep is also called paradoxical sleep because the electro-

encephalogram (EEG, or local field potential, LFP, for

intracranial recordings) is very similar to wakefulness, but

associated with complete muscle atonia. Non-REM sleep

encompasses several substages during which the non-

REM characteristic rhythms (spindles, K-complexes,

slow oscillations, hippocampal ripples) occur in varying

proportions. In humans, the role of sleep in emotional

processing has been extensively investigated using a

wide variety of approaches. Typically, studies measure

emotional reactivity and/or learning and correlate their

related neural activity (fMRI, EEG) with sleep features

such as the relative quantity of REM and non-REM

sleep, the structure, quality, and quantity of sleep,

EEG features (sleep oscillations) or sleep manipulations
www.sciencedirect.com
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Figure 1
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Johann Heinrich Füssli - The Nightmare, oil on canvas, 1781.
(sleep deprivation). For example, hearing one’s own

recorded voice butchering a karaoke song triggers feelings

of shame and embarrassment associated with an fMRI

activation of the amygdala, a core structure for the pro-

cessing of emotions. Normal REM sleep, but not frac-

tioned REM sleep, leads to a decrease in amygdala

reactivity upon hearing the recording the following day

[5]. The effect also correlates with the spindle-rich period

preceding REM sleep recorded by EEG, hinting at the

importance of transition periods, and potentially the

alternation between sleep stages. There are a number

of excellent reviews exposing the current landscape of

research about the role of sleep in emotional processing in

humans [1,2,4,6].

While it appears from the human literature that sleep is

indeed crucial to emotional processing, no clear consen-

sus has yet emerged about the respective roles of REM or

non-REM sleep. It is also still unclear whether emotional

associative memory, the influence of emotions on mem-

ory, and emotional regulation are distinct or overlapping

processes associated with specific sleep stages or rhythms.

To gain further insights into the neural bases that sustain

the role of sleep in emotional processing, one has to turn

to model organisms where the range of available technol-

ogies and experimental designs allows the observation

and manipulation of neural networks with a better spatial
www.sciencedirect.com 
and temporal resolution. In particular, the advent of

optogenetic tools for real-time close-loop manipulation

has enabled the activation or inhibition of neural

responses during specific sleep events (short REM sleep

episodes or specific oscillations) detected ‘on-the-fly’

[7,8��,9]. Here, we will provide an overview of the recent

developments in rodent research about the role of sleep in

emotional processing at the systems level (cellular and

molecular mechanisms for emotional plasticity are

beyond the scope of this review), with a particular focus

on aversive and appetitive associative learning.

Associative learning and the engram as a
model for emotional memories in rodents
Memories are thought to be stored and retrieved within

specific neuronal ensembles called ‘engrams’ [10,11],

which are initially recruited during acquisition. Distrib-

uted engram ensembles for emotional memory encom-

pass several brain regions including the hippocampus, the

prefrontal cortex and the amygdala. In particular, the

basolateral amygdala (BLA) is where the emotional

valence of a stimulus (aversive or appetitive; [12,13]) is

associated with a sensory and/or contextual stimulus in

conditioning paradigms [14]. The optogenetic activation

of engram cells in the hippocampus, cortex or BLA

triggers emotional memory retrieval, while their silencing

blocks it [11,14,15��,16]. Most engram studies explore
Current Opinion in Physiology 2020, 15:230–237
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how events are initially encoded into engrams, and how

memory retrieval relies on the same or modified engram

at various timepoints after encoding. This suggests the

existence of ‘off-line’ consolidation and maturation pro-

cesses that change the structure of the brain-wide engram

over time between encoding and retrieval. For example,

Kitamura et al. [17�] used complex engram tagging, inhi-

bition and reactivation at remote and recent timepoints

after learning in mice to show that immature engram

ensembles are formed at the time of the contextual fear

acquisition (Figure 2) in the hippocampus (HPC), BLA

and medial prefrontal cortex (mPFC). The mPFC part of

the engram becomes functional and is required only

during remote recall. Indeed, a reorganization of the

emotional memory network gradually takes place

throughout the 12–30 day period following acquisition

[18�].

During this consolidation phase between acquisition and

retrieval, animals cycle through different behavioral

states, including NREM and REM sleep. For example,

REM sleep deprivation after contextual fear conditioning

(Figure 2) impairs remote, but not recent, emotional

memory and alters the network activated during remote

retrieval [19�], suggesting that early sleep phases after fear

acquisition could ‘set up’ the network for systems con-

solidation. Total sleep deprivation impairs the retrieval of

a contextual fear memory, and decreases c-fos expression

in the BLA upon retrieval, suggesting that sleep might be

instrumental for the proper recruitment of the BLA part

of the engram at retrieval [20]. Still, there are overall

surprisingly few studies addressing the nature of enduring

changes in memory engram cells during this ‘offline’ state

and post-learning sleep period. Recent studies provide

evidence of a link between engram consolidation and

post-learning engram cell reactivation in the hippocam-

pus [21,22��,23]. Choi et al. [21] revealed increased struc-

tural and functional connectivity between contextual fear

engram cells in the mouse hippocampus, associated with

increased memory strength. A more recent work deter-

mined that hippocampal engram cells formed during

learning and reactivated during sleep sessions (NREM

or REM) are mostly reinstated during retrieval, in a

context-specific manner [22��]. Reactivation during the

post-learning sleep period could sustain the strengthen-

ing of existing synapses between engram cells.

Processing emotions during sleep: non-REM
sleep and hippocampal ripples
Memory consolidation during sleep has been extensively

studied in rodents through the lens of replay of place cells

in the hippocampus. Indeed, during Non-REM sleep

ripples, entire sequences of place cells are reactivated:

the neural activity of the previous wakefulness epoch is

reinstated during the subsequent sleep epoch (‘replay’;

see Foster [24] for a review). Suppressing hippocampal

ripples — and therefore the associated neuronal activity
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(putative replay) — in rats during non-REM sleep fol-

lowing training on a spatial task impairs subsequent

performance [25,26], establishing the crucial role of

ripples and replay in spatial memory consolidation.

Hippocampal reactivations during sleep are increased

[27,28] and prolonged [29] after the exploration of novel

environments compared to familiar ones. It is difficult to

evaluate the emotional valence associated with novelty in

rodents, which may be a mix of fear and excitement

triggering increased arousal. These results nevertheless

suggest that the change in emotional tone might sustain

the increased replay following the exploration of a novel

environment. Further backing this hypothesis, reward or

direct activation of hippocampal dopaminergic fibers

during spatial learning promotes subsequent ripple-asso-

ciated hippocampal reactivations [28,30].

The hippocampal representation of space itself is also

modulated by emotions during the memory encoding

phase. Indeed, emotional contingencies directly influ-

ence place-cell firing [31–34]. A specific non-place,

reward-coding population was even recently described

in the hippocampus [35]. Therefore, the effects of emo-

tions on memory are likely initiated during training and

prolonged during consolidation. Interestingly, pharmaco-

logical or optogenetic activation/inhibition of the BLA

following training in rats bidirectionally modulates spatial

aversive memory consolidation [36,37]. However, it is still

unknown how aversive (as opposed to reward-related)

stimuli influence subsequent replay during sleep.

Interestingly, pairing the activation during non-REM

sleep of one specific place cell with a pleasurable stimu-

lation of the medial forebrain bundle (MFB) in mice

induces an artificial place preference after sleep for the

location associated with the place cell [38]. This suggests

that the emotional valence of spatial representation can

be updated throughout memory consolidation during

sleep. Similarly, during wakefulness the emotional

valence of a given stimulus is constantly updated by

experience. In Pavlovian conditioning protocols, the

repeated exposure to a stimulus or a context (the condi-

tioned stimulus, CS) previously paired with an aversive or

appetitive unconditioned stimulus (US) induces extinc-

tion of the behavior associated with the US (Figure 2).

Importantly, during sleep, the presentation of the CS

alone has a different effect. Indeed, reinstating an olfac-

tory CS during non-REM sleep improves an odor-shock

associative memory ([39,40]; but see Ref. [41]), whereas

the same reinstatement during wakefulness triggers

extinction [39].

In short, activating part of a memory trace during sleep

might be recruiting the complementary part of the

engram through cross-structure pattern completion that

would reinforce the associative memory. Indeed, cross-

structure reactivations have been described between the
www.sciencedirect.com
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Figure 2
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During fear conditioning, animals learn to associate an initially neutral conditioned stimulus (CS, here a context) with a mild electric shock (an

unconditioned stimulus, US). In rodents, when the CS is the context (contextual fear conditioning: CFC), the acquisition of the CS-US association

requires both the hippocampus and the amygdala. When the CS is a simple tone (cued fear conditioning), the hippocampus is not necessary.

Following CFC acquisition and consolidation, the sole presentation of the CS alone is able to trigger a fear response (such as freezing), used as a

measure for the memory of the CS-US association during retrieval. Retrieval reactivates the consolidated memory trace and destabilizes the

original memory, which is then restabilized through reconsolidation. Extinction is evoked by the repeated exposure of animals to the CS (context

or tone) without further exposure to the electric shock, leading to a loss of the conditioned fear over time (‘no freezing’). Most effective treatments

for trauma and stressor-related disorders rely on this process of extinction, called exposure therapy in humans. Since extinction is considered as

a new learning, its stabilization also requires subsequent consolidation. Many studies have used the canonical contextual fear conditioning

paradigm to study hippocampal memory processing and network reorganization but without focusing on the emotional aspect of these memories.

In these cases, the fear response (freezing) was only used as a behavioral readout for the impaired or successful consolidation of the hippocampal

engram. Further studies, including those using cued fear conditioning will be necessary to determine how engrams are modified during sleep in

other brain regions involved in emotional memories.
rat hippocampus and basolateral amygdala during non-

REM sleep following an aversive spatial learning task

[42��]. These joint reactivations occurred preferentially

during hippocampal ripples, and were biased towards the

aversive locations. Although the temporality of the hip-

pocampus-BLA reactivations remains to be assessed,

reactivations of the spatial context during ripples in the

hippocampus might trigger the recruitment of the amyg-

dala part of the engram, thereby reinforcing the connec-

tions between the two. In fact, this can be done artificially

during wakefulness by activating separately tagged hip-

pocampal ‘spatial’ and BLA ‘shock’ engrams together to

create a de novo aversive associative memory [16]. On a

side note, the activity of amygdalar neurons in monkeys

learning an appetitive or aversive tone-odor pairing rever-

berates during the post-trial epochs [43], suggesting the

existence of ‘replay-like’ mechanisms in the BLA during

quiet wakefulness at least.

Coordinated activation between neurons of the hippo-

campus and ventral striatum has also been reported

during the acquisition of place-reward tasks [44], and
www.sciencedirect.com 
the following NREM (but not REM) sleep epoch. These

reactivations occur during ripples and the hippocampus

tends to lead the reactivations [45–47]. Dopaminergic

VTA neurons that have reward or aversive stimulus-

related activity also reactivate during sleep [48]; however,

VTA replay in coordination with hippocampal place-cells

and ripples is restricted to quiet wakefulness and does not

occur during NREM sleep per se [49].

Processing emotions during sleep: REM sleep
and theta oscillations
The main electrophysiological characteristic of REM sleep

identified so far is the presence of strong hippocampal theta

oscillations. Oscillations in general are believed to coordi-

nate neuronal firing between distant structures, including

the hippocampus-amygdala-prefrontal cortex network that

is crucial to emotional memory [50–54,55�,56,57]. In a

seminal paper, Popa et al. [50] showed that the coherence

at theta frequency between the BLA and the hippocampus,

as well as between the BLA and the medial prefrontal

cortex, was increased during REM sleep following training

on auditory fear conditioning compared to the preceding
Current Opinion in Physiology 2020, 15:230–237
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REM sleep. Moreover, the performance during retrieval

24 hour later correlated with these changes in coherence.

More recently, Boyce et al. [8��] used optogenetics to

silence GABAergic neurons of the medial septum, the

major theta-generator, specifically during REM sleep

following several behavioral tasks in mice. Effectively

shutting down theta oscillations during REM sleep, they

showed that performance is impaired in the novel object

recognition task (hippocampus-dependent), and in contex-

tual fear conditioning (Figure 2; both hippocampus and

BLA-dependent). Interestingly, there is no impairment in

conditioning to the auditory cue, which relies on the BLA,

but is hippocampus-independent. Similarly, post-training

pharmacological blockade of gap-junctions, which impairs

theta oscillations, prevents the consolidation of contextual,

but not cued, fear conditioning [58], although the manipu-

lation here was not restricted to REM sleep. Theta oscilla-

tions during REM sleep are therefore a good candidate for

offline coordinated activity related to emotional processing

[59,60]. REM sleep is modified after both appetitive and

aversive training [59,61], while total and selective REM

sleep deprivation after training impairs emotional memory

consolidation and prevents the related network reorgani-

zation [19�,62,63,64�].

The control of REM sleep (transitions from NREM to

REM, REM to wake, duration and quantity of REM sleep

episodes) involves a number of structures and neurons,

the exquisite complexity of which is being gradually

revealed (reviewed in Ref. [65]). REM sleep control is

traditionally studied separately from REM sleep func-

tions, including emotional processing. Nevertheless, acti-

vating REM-promoting melanin concentrating hormone–

producing (MCH) neurons in the hypothalamus impairs

contextual (but once again, not cued) fear conditioning,

while inhibiting them promotes contextual fear memory

consolidation [66��]. However, it is yet unknown how

MCH neurons manipulations affect REM sleep theta

oscillations and hippocampal neural activity during

REM. This paper is also conceptually interesting because

it suggests that the circuits controlling REM sleep and

those underlying its mnemonic and emotional functions

could be widely overlapping. In that same line of thought,

pontine waves (P-waves) originating from the brainstem

(which is instrumental for sleep-wake regulation), occur

primarily during REM sleep and were shown to coordi-

nate with theta oscillations [67]. P-wave density also

correlates with the successful extinction of contextual

fear-conditioning [68]. Overall, this literature suggests

that theta oscillations during REM sleep might be

involved in the consolidation of the contextual informa-

tion, rather than the association between the shock and

contextual information. This corpus of findings is at odds

with the fact that neither hippocampal nor hippocampus-

amygdala replay has been reliably shown during REM

sleep [42��,69], and that typically REM sleep has been

viewed as a stage beneficial to emotional processing [59]
Current Opinion in Physiology 2020, 15:230–237 
rather than spatial memory. Further work is needed to

resolve this paradox.

Open questions, challenges and future
directions
The title ‘the role of sleep in emotional processing’ hides a

nebulous, multidimensional field of research where iso-

lated bursts of knowledge, some reviewed here, are still in

need of a unifying theory, if there can be one. Indeed, sleep

itself is divided into several distinct stages, defined differ-

ently across species [70] and under the control of an

immensely complex network of structures involving a

delicate balance of neurotransmitters and hormones that

is not yet fully understood [71]. In addition, ‘emotional

processing’ covers several concepts including emotional

regulation, associative memory (aversive and appetitive

conditioning), episodic memories associated with an emo-

tional weight andthe modulation of memories by emotions.

From the current state of knowledge, one emerging

hypothesis is that non-REM sleep is involved in consoli-

dating contextual associative memories via ripple-related

coordination with other structures involved in appetitive

and aversive memories. REM sleep, in contrast, could

have different roles depending on the brain structure and

type of memory. Because most studies show an effect on

contextual, but not cued, fear conditioning, REM could

selectively influence the hippocampal part of the emo-

tional engram via theta oscillations, while having a yet

undefined regulatory role on amygdala function and

potentially other non-neocortical structures. It is also

possible that the ‘alternation’ between non-REM and

REM sleep is required for either emotional regulation

and/or emotional memory consolidation [72].

A few studies in recent years started to investigate the

mechanisms underlying sleep consolidation of Pavlovian

conditioning memory. However, whether similar or dif-

ferent mechanisms also underlie extinction memory con-

solidation remains unanswered. Another general pending

question about emotional memory processes is whether

the neural mechanisms and circuits regulating appetitive

versus aversive memory encoding and processing are

separate and if not, how much they overlap. One possi-

bility is that inverted activity patterns of the same circuits

may regulate the balance between aversive and appetitive

emotions and prevent memory interference and distor-

tion. If so, what is the role of sleep in shaping this balance?

Emotional experiences affect the quality and structure of

sleep and likely its ‘mnemonic content’ related to mem-

ory consolidation as well. In turn, sleep structure and

quality affect emotional perception and learning. This

reciprocal influence could be turning into a vicious circle

in the case of PTSD, where sleep disturbances, long

considered a consequence of the disease, are now

regarded as potentially causing or at least reinforcing it.
www.sciencedirect.com
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Actually, it is yet unclear whether and how normal sleep-

dependent aversive memory consolidation processes are

‘hijacked’ to lead to PTSD. Should PTSD be considered

an ‘over-consolidation’ or rather an impaired consolida-

tion of the traumatic memory? Is it an inability to consol-

idate extinction and/or new safety memories or does the

installment of PTSD involve dysfunctions of longer-term

emotional regulatory processes independent of early con-

solidation phases?

Memory processing during sleep has essentially been

studied, at least in rodents, through the lens of hippo-

campus-dependent spatial memory and its consolidation

via the hippocampo-cortical dialogue. In particular, the

effect of REM and non-REM sleep oscillations on hip-

pocampal and cortical synaptic homeostasis and plasticity

is relatively well-known [72] but overall, little attention

has been given to extra-hippocampal features of the

engram. Meanwhile, state of the art optogenetic engram

studies have uncovered many mechanisms related to the

acquisition and retrieval of emotional associative memo-

ries, but little attention was given to the consolidation

phase and sleep-related processing of these emotional

engrams. In the future, combining knowledge and tech-

niques from these two traditionally separate fields of

research will be key in furthering our understanding

sleep-dependent emotional processing. Indeed, we now

need a thorough descriptive work of sleep physiology in

all the brain areas of the emotion-processing network to

be able to produce or refine hypotheses for separate or

coalescing mechanisms sustaining emotional regulation

and emotional memory. These hypotheses can then be

tested in increasingly refined ways using closed loop

systems combined with the tagging/reactivation systems

developed in engram studies. This will allow the manip-

ulation of emotional engrams during specific sleep stages

or sleep oscillations in real time in order to further explore

the sleep-specific dynamics of emotional engrams.
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